Field validation of the ΔRIX performance indicator for flow in complex terrain

Niels G. Mortensen and Ole Rathmann, Risø DTU, Denmark
Andrew Tindal and Lars Landberg, Garrad Hassan, UK

Introduction

- Motivation
- The ruggedness index (RIX)
- The performance indicator (ΔRIX)
- Previous work and results
- Methodology
- Verification at sample wind farm sites
- Conclusions
- Recommendations
 - for rugged terrain
 - and in general
Motivation

- Wind farms are installed in complex and steep terrain
 - flow separation when slopes are steeper than 30-40%
- Common engineering flow models designed for attached flow
 - WASP and WASP Engineering (Risø DTU): BZ model & LINCOM
 - WindFarm (ReSoft): MS Micro
- Common wind farm design software may employ WASP calculations
 - GH WindFarmer (Garrad Hassan)
 - WindPRO (EMD International)
 - WindFarm (ReSoft)
- For any flow model applied in complex terrain, one needs to know
 - is flow separation likely to occur?
 - is situation outside the operational envelope of the flow model?
 - what are the qualitative and quantitative effects on the predictions?
 - can the effects be mitigated or corrected for?
- Analyses and results reported here based on the WASP flow model

Ruggedness index and ΔRIX

- **Ruggedness index, RIX**
 - fraction of terrain surface which is steeper than a critical slope θ_c
 - slopes evaluated along 72 radii
 - calculation radius ~ 3-5 km
 - critical slope $\theta_c \approx 0.3-0.4$
 - marks onset of flow separation
 - Design operational envelope for WASP is when RIX = 0

- **Performance indicator, ΔRIX**
 - two sites involved: MET and WTG
 - $\Delta RIX = RIX_{WTG} - RIX_{MET}$
 - $\Delta RIX = 0 \Rightarrow$ reliable prediction
 - $\Delta RIX < 0 \Rightarrow$ under-prediction
 - $\Delta RIX > 0 \Rightarrow$ over-prediction

- Slopes steeper than θ_c are indicated by the thick red (radial) lines.
Methodology

- Comparisons of measured and/or predicted wind speeds
 - plot prediction error versus ΔRIX for met. masts
 - find site-specific fitting constant (α)
 - calculate corrected predictions
 - plot original and ΔRIX-corrected data
 - mean bias and mean absolute error (MAPE)
- Eight wind farm sites with 30 meteorological masts
 - Italy, Morocco, N Europe, Spain, Portugal
 - anemometer levels from 10 to 60 m a.g.l.
 - $|\Delta RIX| > 0$; varies from 0-23%
 - all sites more or less outside operational envelope of model
- Prerequisites
 - sites selected so other effects are of minor importance: meso-scale effects, complicated land-use, forest effects, thermal effects, etc.
 - high-quality wind and topographical inputs
Case 1: Predictions when $|\Delta RIX| = 0$

Profile predictions only!
- Three wind farm sites
- Five different met. masts
- Levels 10/40, 30/60, 10/20/30/40
- Mast 1 (30/60), $RIX = 6\%$
- Mast 2 (30/60), $RIX = 9\%$
- Mast 3 (10/40), $RIX = 15\%$
- Mast 4 (10/40), $RIX = 26\%$
- Mast 5 (10/40), $RIX = 16\%$
- $\Delta RIX = 0\%$
- $MAPE = 1.3\%$
- Difficult comparison!
 - roughness lengths
 - stability effects
 - flow distortion

Case 2: Predictions when $|\Delta RIX|$ is small

- Wind farm site with 28 turbine sites
- Two 60-m met. masts, 2 km apart
- Predictions for 60 m a.g.l.
- Location: Iberian Peninsula
- Mast X $RIX = 6\%$
- Mast Y $RIX = 9\%$
- Turbine sites $RIX = 4\%$ to 13%
- ΔRIX masts $= \pm 3\%$
 - $\Delta RIX_X = -2\%$ to 7%
 - $\Delta RIX_Y = -5\%$ to 4%
- Standard WASP calculation
 - $Y = 1.00 \cdot X$
 - $MAPE = 0.3\%$
Case 3: Predictions when $|\Delta RIX|$ is small

- Eight 30-50 m masts, up to 8 km apart
- Predictions for 30-50 m a.g.l.
- Location: Italy

- Mast 1, RIX = 2%
- Mast 2, RIX = 1%
- Mast 3, RIX = 1%
- Mast 4, RIX = 1%
- Mast 5, RIX = 1%
- Mast 6, RIX = 0%
- Mast 7, RIX = 1%
- Mast 8, RIX = 1%

ΔRIX masts = ±2%

- Standard WASP calculation
 - $Y = 1.00 \cdot X$
 - MAPE = 5.7%

<table>
<thead>
<tr>
<th>Measured wind speed [ms$^{-1}$]</th>
<th>Predicted wind speed [ms$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

ΔRIX-corrections applied
- $Y = 1.00 \cdot X$
- MAPE = 5.7%
Case 4: Predictions when $|\Delta RIX|$ is small

- Six 50-m met. masts, up to 5 km apart
- Predictions for 50 m a.g.l.
- Location: N Europe

- Mast 1, $RIX = 11\%$
- Mast 2, $RIX = 7\%$
- Mast 3, $RIX = 8\%$
- Mast 4, $RIX = 9\%$
- Mast 5, $RIX = 5\%$
- Mast 6, $RIX = 5\%$

- $\Delta RIX_{masts} = \pm 6\%$
- Standard WASP calculation
 - $Y = 1.00 \cdot X$
 - MAPE = 2.6\% (SD = 2.1\%)

Measured wind speed [ms$^{-1}$]

Predicted wind speed [ms$^{-1}$]
Case 5: Predictions when $|\Delta RIX|$ is large

- Wind farm site with 25 turbine sites
- Two 40-m met. masts, 2.5 km apart
- Predictions for 40 m a.g.l.
- Location: Iberian Peninsula

- Mast X $RIX = 15\%$
- Mast Y $RIX = 26\%$
- Turbine sites $RIX = 15\%$ to 24%

- ΔRIX masts $= \pm 11\%$
 - $\Delta RIX_x = 0\%$ to 9%
 - $\Delta RIX_y = -11\%$ to -2%

- Standard WASP calculation
 - $Y = 0.93 \cdot X$
 - MAPE = 7.5\%

- ΔRIX-corrections applied
 - $Y = 1.00 \cdot X$
 - MAPE = 1.3\%
Case 6: Predictions when $|\Delta \text{RIX}|$ is very large

- Five 10-m met. masts, 2-15 km apart
- Predictions for 10 m a.g.l.
- Location: Northern Portugal
- Mast 06, RIX = 28%
- Mast 07, RIX = 33%
- Mast 08, RIX = 18%
- Mast 09, RIX = 10%
- Mast 10, RIX = 11%

$\Delta \text{RIX masts} = \pm 23\%$

- Standard WASP calculation
 - $Y = 1.00 \cdot X$
 - MAPE = 14.9%

$\Delta \text{RIX-corrections applied}$
 - $Y = 1.00 \cdot X$
 - MAPE = 1.7%
Conclusions

- WASP flow model generally works well for $|\Delta \text{RIX}| < 5\%$
 - no improvement by applying ΔRIX-procedure
 - large bias and scatter related to large distances and low wind speeds
 (mesoscale effects? thermal effects?)
- WASP standard predictions significantly biased for $|\Delta \text{RIX}| > 10\%$
 - magnitude and sign of bias explained by simple arguments
 - significant improvements by applying ΔRIX-procedure
 - scatter increases only slightly with increasing ΔRIX
- ΔRIX correction procedure based on wind speed
 - works well for relatively ‘uncomplicated’ sites with steep slopes
 - $\ln(U_p/U_m)$ versus ΔRIX fit is linear and goes through $(0, 0)$
 - fitting constant site-specific ($0.7-1.5$ for default parameters)
 - procedure easy to implement in WASP
- Prediction of actual AEP for operating wind farm improved by 70\%
 - from overestimation of 13\% to 3\% on AEP

Best practices in rugged terrain

Measurement programme [bankable]

- Two or more masts required
 - sited according to similarity principle (including forestry)
 - cover range of RIX over site
 - distances not greater than 1 km
 - supported by remote LT mast

Topographical inputs

- Minimum size of map
 - Elevation: 10 km from any site
 - Land-use: max($100 \times h$, 10 km)
- Detail and accuracy of map
 - wind farm site: 2-m contours
 - nearby terrain: 10-m contours
 - further away: 10-50 m contours
 - SRTM data may be used, but must be quality-controlled and detailed

WASP modelling

- RIX and ΔRIX analyses required
- Use similarity principle if and when applying ΔRIX correction procedure
- Standard heights in wind atlas
 - change one level to hub height
 - never change 10-m level!
- Standard roughnesses in wind atlas
 - other classes may be added or roughness lengths changed
 - never change $z_0 = 0$ m class!
- Heat flux parameters
 - may be adapted to site

Future

- Evidently, ‘best practices’ is not a long-term substitute for further research and improved models, such as CFD!